The Muscle Biopsy.

From essential Diagnostic tool to still an important Procedure?

Svalbard 3-5 Sept. 2019

Sigurd Lindal
Mayo Clinic was a role model

The needs of the patient comes first
The surgical procedure of muscle biopsy

- "Open" muscle biopsy
- Processing of muscle tissue
 - Should start immediately after surgery
 - To obtain optimal tissue quality, correct handling of the muscle specimen is essential
 - A technologist should be present in the operating room
- Divided into 3 specimens
 - For cryostat sections
 - Electronmicroscopy
 - Formalin

Rest: Frozen For genetic /Biobank
Muscle biopsy – staining for light microscopy
First human Musle Biopsy
Griesinger & Bilrot 1865

The biopsy was taken in Zurich, Switzerland on the 15. of August 1864

Open muscle biopsy, under chloroform anesthesia from the deltoid muscle of a 13 year old boy

”Muscle tissue with necrosis and pseudohypertrophy”, today known as Duchennes Muscular Dystrophy
Which structural features do we observe in the microscope?

1. Myopathic Changes
2. Neurogenic Changes
3. Inflammatory Changes *
 Immune mediated myopathies

Groups with atrophic fibers surrounded by hypertrophic fibres
1- Muscle biopsy in Myopathy

Myopathic Changes

- Myofiber necrosis
- Myophagocytosis
- Regeneration
- Oedema (swelling)
- Myopathic rounded and atrophic fibres
- Increase of internal nuclei
- Myofiber Hypertrophy-splitting
- Endo/perimysial fibrosis
- Nuclear chains
- Moth-eaten fibers
- Ring fibers
- Whorled fibers
- Vacuoles
- Inclusions
- Inflammation*
2 – Neurogenic disorders have the following characteristic in muscle biopsy:

- Angulated atrophic myofiber (NADH+)
- Fiber-type grouping
- Group atrophy
- Target fibers
- Nuclear clumps
Fiber type grouping & Reinervation (ATPase 4.5) Targets (NADH)
Important groups that can be diagnosed by muscle biopsy

- Muscular dystrophies
- Congenital Myopathies
- Inflammatory Myopathies
- Metabolic myopathies
 - Mitochondrial myopathies
 - Glycogen storage diseases
- Neurogenic Disorders
Immunohistochemical staining (dystrophin)
Western Blot
Congenital Myopathies

- Central Core Disease
- Nemaline Myopathy
- Myotubular Myopathy
- Centronuclear Myopathy
- Congenital fibre type disproportion
Congenital Myopathies

- Central Core Disease
- **Nemaline Myopathy**
- Myotubular Myopathy
- Centronuclear Myopathy
- Congenital fibre type disproportion
Electron Microscopy (EM) – in Tromsø....
Ragged-Red-Fibres (RRF) and EM-findings in Mitochondrial Myopathy
PAS STAIN
(Pompes)

EM: accumulation of Lysosomal glycogen
Polymyositis - autoinvasion
Inclusion Body Myositis -IBM
Interdisciplinary meetings...
Diagnosis of Neuromuscular Disorders

3 Pillars

1. **Clinical** (Neurology, Neurophysiology, Pediatric and Rheumatology)
 - Decides to take the muscle biopsy- (analysis -CK, clinical ex.
 - Electromyography (EMG)
 - Imaging

2. **Muscle biopsy** (Dept. of Pathology in Norway)
 - Decrease in number

3. **Medical Genetic Tests** (NGS) Increased number

• **IS MUSCLE BIOPSY NECESSARY?**
Biopsier samlet med andel konsultasjoner

- 2000: 113
- 2004: 110
- 2008: 133
- 2012: 95
- 2014: 70
- 2018: 45

Konsultasjoner:
- 2000: 20
- 2004: 29
- 2008: 30
- 2012: 29
- 2014: 29
- 2018: 1

Legende:
- Biopsier samlet
- Konsultasjoner
Next Generation Sequencing (NGS)
Allows the sequencing of hundreds of genes from hundreds of patients, simultaneously.

Department of Medical Genetics, UNN
Muscle biopsy pathology or a shift to "liquid muscle pathology"

Editorial Curr Opin Neurology B.Schoser 2016

- Muscle pathology (BIOPSY) has been the diagnostic corner-stone of more than 800 distinct muscle disorders over the last 5 decades
- Nevertheless, several classical clinical indication and reliable genetic testing, have made the muscle biopsy redundant;
- Next-generation sequencing techniques - NGS (gen panel), has supplanted muscle pathology for making the correct diagnosis (much cheaper and more reliable)
Only Acquired myopathies: Biopsy in first line
Dominant myopathies: Direct gene analysis
Recessive Myopathies: Focused gene panel/exome/genome analysis
Muscle biopsy and the future?
B Schosser

Conclusion: Next-generation sequencing (NGS) and the clinical exome/genome approach combined with proteomics, are now taking priority in the diagnostics setting of a "modern liquid muscle pathology"

Muscle biopsy has still an important role and the analytical scientific and medical expertise in muscle pathology is needed for a full understanding of the *pathogenesis* and future *therapies*
169 pediatric patients (<18year)
-Neuromuscular related symptoms
-Neurologist were referring physician (89%)
Rest from Rheumatology and Medical Genetics
-Left m. vastus lateralis (82%)

Structural changes (3 categories)

1 Normal pathology n=45 (27%)
2-Minimal changes n=23 (14%)
not sufficient for a definitive diagnosis.
3 Pathological changes n=101 (60%)
sufficient to make pathologic diagnosis (based on description)

Results:

In 101 patients (60%) the pathologists were successful in reaching a pathological diagnosis.

- Type 2 fiber atrophy (n=16)
- Type 1 fiber atrophy (n=13)
- Denervation pattern (n=11)
Conclusion:

We find that muscle biopsy is *consistently useful* in helping pediatric patients with a final diagnosis.

In this matter, we disagree with most of the reported literature about the diagnostic yield of muscle biopsy.

Muscle biopsy

(Immunohistochemistry, Western blot, EM, fibroblast culture, biochemistry – respiratory chain analysis)

Combined

with NGS (genetics)
Have a wonderful seminar on Svalbard!