

The Biological Costs and Plasmid Sequence of Two *Klebsiella pneumoniae bla*_{KPC-2}- and *bla*_{VIM-1}-Carrying Plasmids in Different *Escherichia coli* Clinical Isolates

Maria Chiara Di Luca^{1*}, Vidar Sørum², Julia Kloos², Pål J. Johnsen² and Ørjan Samuelsen^{1, 2*}

¹Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Dept. of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway. ²Microbial Pharmacology and Population Biology Research Group (MicroPop), Dept. of Pharmacy, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway.

INTRODUCTION

Resistance to carbapenems has increased globally in the past decades, representing a major concern to human health (1). In Enterobacteriaceae, the recurring association between carbapenemase genes and mobile genetic elements (e.g. plasmids) facilitates the efficient inter- and intra-species dissemination of these resistance determinants (2). However, the carriage of plasmids impose a fitness cost to the bacterial cell, which is a key factor that determines if a newly horizontally acquired plasmid will be stably maintained in a bacterial population over time (3).

OBJECTIVES

To determine the sequence and investigate the biological cost of two carbapenemase-encoding plasmids containing *bla*_{KPC-2} (pG12-KPC-2) and *bla*_{VIM-1} (pG06-VIM-1) isolated from *Klebsiella pneumoniae* when newly acquired by uropathogenic Escherichia coli clinical isolates of different genetic backgrounds.

MATERIALS AND METHODS

Two K. pneumoniae plasmids encoding bla_{KPC-2} and bla_{VIM-1} were transferred by electroporation (4) into E. coli clinical strains of different phylogroups and MLST sequence types. Transformants were characterized phenotypically and genotypically. Fitness costs of the plasmids in *E. coli* were estimated in head-to-head competition experiments (5). Plasmid sequences were determined using NGS technology. Assembly, gap closure, annotation and comparative analyses were performed.

REFERENCES

1. Tängdén et al., 2015. J. Int. Med. 277: 501-12; 2. Carattoli et al., 2009. Antimicrob. Agents Chemother. 53: 2227-38; 3. Johnsen et al., 2009. Lancet Infect. Dis. 9: 357-64; 4. Dower et al., 1988. Nucleic Acids Res. 16: 6127-45; 5. Ray et al., 2009. Genetics. 182: 1165-81; 6. Chen et al., 2014. Antimicrob. Agents Chemother. 58: 2871-7; 7. **Drieux et al., 2013.** J. Antimicrob. Chemother. 68: 97-100.

ACKNOWLEDGMENTS

We are grateful to Irina Starikova, Nils Hülter, Umaer Naseer and Bettina Aasnæs for critical comments and technical assistance. This study was supported by Northern Norway Regional Health Authority, Tromsø Research Foundation (Mohn) and the Research Council of Norway.

// Strains and susceptibility profiles

pG12-KPC-2 was successfully transformed into two different genetic backgrounds. pG06-VIM-1 was transformed into three different genetic backgrounds of which one background (ST69) was the same as for one bla_{KPC-2} transformant.

				Antimicrobial susceptibility profiles (MIC, mg/L)													
Isolate	Species	ST	Phylogroup	Comment	Antibiotic												
					AMP	AMX	TZP	CAZ	ATM	MEM	IPM	ЕТР	GEN	TOB	AMK	CIP	
K47-25	K. pneumoniae	ST258	-	Host strain of pG12-KPC-2	≥256	128	≥256	≥256	≥256	8	4	16	2	32	64	≥32	
AO-15200	K. pneumoniae	ST147	-	Host strain of pG06-VIM-1	≥256	≥256	≥256	≥256	256	32	32	8	2	16	16	≥32	
K56-43	E. coli	ST537	B2	Recipient strain for transformation	2	2	1	0.25	0.064	0.016	0.25	0.004	0.5	1	4	0.008	
K56-65	E. coli	ST10	А	Recipient strain for transformation	2	2	1	0.125	0.032	0.016	0.25	0.008	0.25	0.5	2	0.016	
K56-68	E. coli	ST95	B2	Recipient strain for transformation	4	4	2	0.5	0.125	0.032	0.25	0.008	0.5	1	2	0.032	
K56-75	E. coli	ST69	D	Recipient strain for transformation	4	4	2	0.25	0.064	0.032	0.25	0.008	0.5	1	2	0.016	
G1-13	<i>E. coli</i> K56-65	ST10	А	pG12-KPC-2 transformant	≥256	32	32	2	8	0.25	0.5	0.5	0.25	0.5	1	0.016	
G1-14	<i>E. coli</i> K56-75	ST69	D	pG12-KPC-2 transformant	≥256	32	128	4	16	0.5	0.5	0.5	0.5	1	2	0.016	
G1-15	<i>E. coli</i> K56-43	ST537	B2	pG06-VIM-1 transformant	≥256	16	16	≥256	0.064	0.25	0.5	0.25	1	4	8	0.008	
G1-16	<i>E. coli</i> K56-68	ST95	B2	pG06-VIM-1 transformant	≥256	32	256	≥256	0.125	0.5	1	0.25	1	8	8	0.016	
G1-17	<i>E. coli</i> K56-75	ST69	D	pG06-VIM-1 transformant	≥256	32	128	128	0.064	0.25	1	0.25	1	8	8	0.016	

// Plasmid analysis

- pG12-KPC-2 was a multireplicon plasmid (IncFI and IncFII) with a backbone similarly organized to pKpQIL-10 (6). The resistance region included bla_{KPC-2} as part of Tn4401a.
- pG06-VIM-1 belonged to the IncR group. The scaffold showed high similarity scores with pKP1780 while the bla_{VIM-1} region was part of a mosaic structure highly similar to that of plasmid pTC2 from Providencia stuartii (7).

CONCLUSION

In a non-selective environment, plasmid carriage caused low to moderate fitness reduction in different plasmid-host combinations. This cost was dependent on the genetic background of the host and/or the specific plasmid. Both bla_{KPC-2} and bla_{VIM-1} -encoding plasmids combine a diverse host range, maintenance capacities, plasticity of the MDR region and a wide variety of resistance genes, properties that may contribute to the acquisition and the spread of resistance determinants.

* Contact information: maria.chiara.di.luca@unn.no/orjan.samuelsen@unn.no

RESULTS

- Both plasmids were stably maintained in *E. coli* and resulted in low to moderate reductions in host fitness (1.1 to 3.6%).
- For pG12-KPC-2, a difference in fitness cost was observed between two different genetic backgrounds whereas pG06-VIM-1 displayed no fitness difference between three different genetic backgrounds.
- A difference was observed between pG12-KPC-2 and pG06-VIM-1 in the same genetic background.